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1. Consider a controlled system characterized by Eq. 

dddt = Aa: + bu (1.11 
where x is an n-vector in the phase coordinates x, ; u is a scalar control; A is an (n X n)- 
constant matrix, and b is a constant n-vector. The problem consists of choosing a control 
u (t) (r o.$ t ( t 8) which will bring system (1.1) from the state x (t (3 = xs to a position of 
equilibrium x ( t 8) = 0. A great deal of attention has been devoted to this well known prob- 
lem (see, for example, fl to 6] ). Herein, the investigation is conducted on the assumption 
that the controls a are represented by generalized functions. This choice of class for the 
allowable actions U, naturally places it within the class of control problems utilizing the 
approach proposed in [a]. Indeed, if we initially let u (t 1 be an integrable function, we cart 
write, with the aid of Caucby’s fonunla [7] 

(1.2) 

ta 
whereX[t, r ]=Iexp~(t- 
(for u(t)= 07, 

to) = fxit (t, to )] is the fundamental matrix of system (1.1) 

Ii [ta, .t.l = {WJ (z)} = X ttp, zl b 
It is convenient to treat the components of the second term in the right-hand side of 

(1.2) as values of a linear functional (pu fUiJ] on the functions !r@)(~). Hence, (1.2) may 
be written in terms of the coordinates as follows: 

(i r= 1, . , ., II) (1.3) 

The functions h(r) (7) (to< T< t f may be continued as functions defined for -m < 
< T< 00 possessing derivatives of al B orders and vaniahing for 1~1 > 4, where 4 is suffic- 
iently small. Then these functiona can be considered as elements of a linear space K r{ h 1 
utilized in the construction of generalized functions [a]. Now, making use of (1.31, the 
allowable controls I( may be extended to the class of generalized functions whose support 
lies entirely on the segment 1. t In this definition we assume that the generalized 
control a will bring the system 1. “y rfj.to the state n (raj= {xl (ra)f (1.3). where cpU is a 
linear functional on K t{ h 1 embodying the given effect. Particn ar cases of such a situa- 
tion have been investigated in [3, 5 and P] , which, in fact, considered the simplest gencr- 
alized controls including impulsive effects. 

Formulation of the equilibrium problem on the basis of generalized dieturbances and 
employing generalized function theory has been presented in [lo and 111. The present work 
is concerned with two problems: 1) The attenuation of system (1.1) by means of genera- 
lized controls u are composed of &-functions and their derivatives 8(t), a(2),... W-t), and 
2) 0 timnm 
31 [a l? 

attenuation of system (1.1) under minimum conditions of a specified intensity 
of the generalized action IL. 
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2. The controls u, attenuating (l.l), will be sought in the form 
u = h,6 (t - 0) +. . . + &p-l) (t - 8) (2.1) 

where 6 is some fixed moment in time within the interval [t, LB] and h, are the desired 
constants. From the definition of the functions 8(k)(t) and from the known properties of the 
matrix X[ t,g, 71, we have 

1P 

$ x [Ep, z] HP’ (z - 6) c_jz = (-I)~ fkx;;;’ 51);=a b = X [tp, 61 A”‘b 

Th& substituting for II from (2.1) into (1.2) wherein the right-hand side behaves in 
accordance with Section 1, and setting z (t 8) = 0, we obtain the following Eq. for the nn- 
known A, : 

- X [tp, to] z= = X [tp, 61 (hlb + hBAb + hnA2b + . . . + &An-lb) (2.2) 

Eq. (2.2) has a solution for arbitrary initial conditions if and only if the vectors b, Ab, 
A n-1 b ate linearly independent, i.e. if the condition for a general state [l] is satisfied 

i;: in other words, if the condition for complete control [4] of system (1.1) is satisfied. In 
particular, for fi = t,, (2.2) takes the form 

- xa = hlb + haAb + hsr12b + . . . + ?+I”-‘b (2.3) 
Thus we conclude that a generalized control u of the form (2.1) which will result in the 

attenuation of system (1.1) exists if and only if the vector x = xa lies in the subspace gen- 
erated by the vectors b, Ab,..., An-1 b; if 6 = f,, then the X, are the coordinate compo- 
nents of the z%ectot upon its resolution along the Al-1 b vectors. 

This conclusion corresponds, of course, to a known fact in the theory of controls of 
linear systems whose action is described by generalized functions u (t 1. 

3. Suppose now that z is an element in some infinite-dimensional linear space { x 1. Sup- 
pose, moreover, that in (1.1) u is again a scalar, b is an element of {x ] and A denotes a 
linear operator for which Cauchy’s Formula (1.2) holds, whereupon the function 

exp A (t - to) = 2 Ai ‘tir to)i 

has the known re 
mento #*I = A ?F 

larity properties of group opL:tora [12]. Su 
e 

pose further that the ele- 
-l b (k = 1, 2, . ..I constitute a basis in the x ] space. Consequently, 

each element x in (x 1 may be represented in the form 

2 = $ kiYP3 = 5 E A’-lb (3.1) 
.z i=l 

Assume that the norm p[z] whit; d:fiies the metric in the (x 1 space is chosen so as to 
satisfy the condition : for every element x (3.1) having a finite norm p[x] < oo and for all 
E > 0 there exists an N such that 

_ 00 

-i=N+l 

Then for any initial condition r = x a having a finite norm and for all E > 0 we may con- 
struct a generalized control I( of the form (2.1) which will bring (1.1) to a state x = 
satisfying the condition p[x (ta)] < E. I n 
ficient, in (2.1). to choose 6 = t,, n = N 

order to prove the preceding statement 
%(L@ 

it is suf- 
and to set A, = - , (i = l,..., N 1. Then tepea- 

ting the developments of Section 2 which, by assumption, ho1 E for the operator A, we find 
that the specified control u will bring the object system to a state 

00 

x(tp) = 2 E.y[il 
i=N+l 

Thus the above statement has been proved. 

4. The control II which was investigated formally in Sections 2 and 3 causes attenuation 
in system (1.1) (to a atate of equilibrium or to a state lying in an E -neighborhood of the 
equilibrium point x = 0, respectively) instantly at t = 6. Such a control is, of course, a 
practical impossibility. However, such a control may be usefully investigated in those 
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cases in which the attenuation is achieved through effects which are relative to a system 
such as (1.1) are of high intensity and short time duration [r,, t + E]. Then controls are 
realized in practice, and the 8-functions and their derivatives 6 ?k) are used as approxima- 
tions of ordinary functions A 1(“) (t ) : 

A,(O)(t) = 1 / E for 0 < t -1 e, A E(O)(t) = 0 for other 1 

A ,‘tJ (t) L- 4 / r$ for 0 < t < E / :! 
A L(1) (t) =m - (i / e2 for E / 2 < t < E 

LI E(1) (t) = 0 for other t etc. 

AE 8 + 0, the result of the control action 

uE (t) = i hLAEci-” (L-6) (t,<~t~a-tE) 
i=l 

(4.1) 

approaches the value x(tg) which is obtained by formal utilization, of the control II (2.1). 
This circumstance also determines the real sense of the last generalized equation. Note 
also that in thia manner utilization of the control Y (2.1) and the associated controls u r f L 1 
(4.1) penuito the estimation of the order of growth of the controlling effects ue ft ) as 8 + 0. 
This order is generally of the order l/e”. 

5. Consider the attenuation problem for system (1.1) subject to a minimum condition of 
intensity.% [II] for the generalized control IL. By the very definition of the generalized con- 
trols u which are here under consideration, their intensity would naturally be evaluated 
from the results of the corresponding operations cp,, [h] on the elements h (7) in the 
K [h (T)] space. Hence, conaider some function (more precisely a functional) pp[h (T)] 
(A b e so script /.t is a number), and assume for definiteness that x [u] ,< ~1 if and only if the 
inequality 

CPU [h (r)l < PP [h (z)] (5.1) 
is satisfied for all h (7) in Kr( h (7) 1. Clearly, this estimate of the intensity x [u] is an 
automatic extension to the generalized controls u of the same treatment of intensit 

J 

x [u] 
as that which was given to the intensity X [u] of ordinary controls u (t) in [6 and 9 , where- 
in they set X[u] = p*[u (T)] and pp[h (T)] = pp[ h(7 
p+ are the norms in a suitable function space B (h (7) 

] (p > O), where the symbols p and 
and in the adjoint space B *{u (7) 1, 

respectively. Then it becomes clear that here also the controls problem ma be convenient- 
ly treated as a problem of momenta, and, for aoitably behaved functions pP ‘t h], the solution 
of this problem, and from it the solution for the controls, is obtained as a corollary to the 
Hahn-Banach theorem on the extension of a linear functional [13]. Hereafter, in accordance 
with the above discussion, we will assume that the function p satisfies two conditions: 

11~ [h(T)] d p d e en a only on the values of the functions h (Tvwhich are admissible for 
ru, T < t,g; 2) for any h (7) and g (7) in K t and for arbitrary values of a >/ 0, the following c 
conditions hold : 

p, [h + gl< P, [hl + P, kll P, [ahI = VP [hl (5.2) 
Then indeed the solution of the problem of attenuation of system (1.1) follows the known 

procedare for solving a moments problem. We will describe it here briefly for completeness 
of the development. 

setting X, (tg) 7 0 G’ = l,..., II) in (1.3), we obtain Eqs. 

‘P, [h(‘) (r)] = ci (i = 1, . . . , n) (c = {ci) -= - X [tat t,l r”) 
Conaider. within the K 

(5.3) 

h (7) in K t which, for tq, T,< tp, have the form 2 
{hf space, e sabapace K, (hl consisting of all thoae functions 

h (z) = l,h(‘)(q + . . . + Z,hcn) (T) (5.4) 
and define, for these functions, a linear operation qn [h], such that 

qn [hl = Z,c, _t . . . + l,,(‘n (5.5) 
Here 1, are any real numbers. The operation (Pn (5.5) may be performed if and only if the 

quantity u = 1, ct + . ..+ I, C, vauishes every time that 

l&t (7) -t- ’ . . + Z,h, (T) G 0 for ta<r< t,Q 

If the above condition is not fulfilled, then the moments problem (5.3). and therefore the 
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controls problem, has no solution. Thus, suppose that the operation (5.5) is meaningful. 
This operation satisfies (5.3), but it is defined only ou K, l Let us examine the possibility 
of extending T,~ to the operations qlu, defined over the entire K I space. Choose some val- 

ue of cr. 
If there exist values of I, for which the inequality 

‘p, [hl = kr1+ . . * + LGl>P, Ihl (5.6) 

holds, then the moments problem (5.3) again has no solution for x 1~1 < p. However, 
suppose that the ineqnality 

cp, thl = i liCi\( P, [hl 6.7) 
i=I 

holds for a given p for all values of If. 
Then, in accordance with the previously cited Hahn-Banach Theorem [13], the operation 

(P,, [h] may be extended to the functional cpu [h], which is defined 9ver the entire K 
r’ 

hj 

apace and satisfying (5.3) BS well as the inequality cpu (h] < p p lh] for all h (7) n Kt; 
In view of the fact that every function h (7) in K t which satisfies the condition A (7) a 0 
for ts\< r,< t also satisfies ‘pu Ih] = 0, b 
of u is indec f 

constrnction, we conclude that the support 
contained within the segment Q 

satisfied, there exists a 
t,, ‘a]. Hence, when the inequality (5.7) is 

eneralized control a causing the attenuation of system (1.1) and 
having an intensity% [U f < ~1. 

We will now make use of the known relation 
n 

2 2JP’ (z) = Z’H [t/3, a] = t’x [Q, 21 b = b’s [Z, ta] 1 (5.8) 
i=l 

where the prime denotes the transpose of a quantity; the symbol S[ t, to] represents the 
fundamental matrix of the system whose motion is given by Eq. 

dS 

dt= 
- A,’ (5.9) 

which is adjoint to Eq. dx/dt = Ax, corresponding to the original system. Then the consid- 
erations given above in consection with the inequalities (5.6) and (5.7) m.ay be ssmmsrfzed 
in the following rnle determining the solution to the problem of optimal attenuation for sy~- 
tern (1.1) and in a similar, krtown rule for generalized controls 16 and 14]. 

The orsm 5.1. In order to solve the o timal attenuation problem for system (Ll), it is 
necessary to examine the motion a (t) = S f, ‘81 s (6~) for the adjofnt system (5.9) and to P 
construct the quantity 

T* US ($11 = p!L [US Iz, tpls (t&l 
Let p” be the smallest value of ~1 for which the inequality 

TP 1s ($>I - s’ (Q c a 0 
ie satisfied for all a [ ts] , whereupon 

(5.10) 

min, IrPo 1s ((~)l - s’ (b) cl = fJ (5.11) 
for /a (‘B) = 1. Then the desired min 3~ [u] = f_t* and the optimal control so with inten- 
sity 3c [u” f = f_t.O satisfies the maximum condition 

VU0 tb’S [z, $1 ~“1 = max, for 3c [uf < p* (5.12) 
Here a O= a o(r~) is the solution to problem (5.11) and the symbol 11~11 denotes the Baa- 

Bdean norm of the vector a. 

NO t e. The sopporting theory of generalized functions assumes that the fnnctionsh vu. 
which embody these fnnctions are continuous in the countably normed space K. fn thfs ooz- 
nection, it must be assumed that, by the choice of pp[h], the condition cp, [h] < 9, [h) 
guarantees continuity of ippu. 

it is frequently convenient to traneform the moments problem (5.3) by eremaltielying ini- 
tially both sides of (1.2) by Pt[tp, t& Th en we obtain a rule for the solution of the prob- 
lem which is similar to Theorem 5.1, but in that case it in necessary to determine ths smsi- 
lest value p = /.t” not from (5.11) bat from the condition 

min, IrPO fs (r,)I - 8’ ft,) C] = 0 (5.13) 
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fo+(ta)/j=lsndc=-s 4 were yP[ s (:,)I = p 
trol no is determined again from the maximum 

[b’S[ 7, t J a (t,)]. The optimal con- 
con bf. ltlon 

(puO [VS [t, tJ SO] = max, for x [U] < f_l.” (5.14) 

similarly to (5.12). but where l ‘= a 
eity of y&] and Y 

‘(t,) is the solution of (5.13). In view of the homogen- 
= i’c with respect to s, the condition 11s11 = 1 in problems (5.11) and 

(5.13) could be chosen arbitrarily and may be replaced by any other similar condition. 
Theorem 5.1. is concerned with bringing system (1.1) to a state of equilibrium x: (:p)= 

= xp=‘O. If it is desired to brin 
compose R given manifold Af{x JI 

the system (1.1) to one of the states x (‘B - xflwhich 
then, as in the case of ordinary controls 

lem can be solved as a moments broblem (5.3) utilizing Theorem 5.1 with 

141, the prob- 

c [ZP] = sp - x [t 

and minimizing r”[ x4 for the xfi in M. 
P’ ta] zs 

If the manifold Y is a convex, compact set in the 1x3 space, then, as in the case of or- 
dinary controls [14] , the operations involving the minimum with respect to s and the maxi- . 
mum with respect to x@ are interchanged, resulting in a known situation in game theory, 

with a saddle point [ 151, and having a real geometrical meaning if the relarions determining 
the solution are interpreted as partition conditions for a convex set Y and a convex acces- 
sible region C for the recess (1.1) in the 1x1 space (cf., for example 116 and 171). 

For the function pP P h], it is convenient to choose quantities depending on v(k) = maxV 
Idkh/d 7 “1. In particular, choosing pJh] = p max T Ih (7) 1, we obtain controls consisting 
of impulse a-functions which have been investigated, for example, in [3, 5 and 91. Genera- 
lized funcrious of higher order are then excluded as a result of the specified inequality% 

bl6Cc maxblh(7)l, which does not take into account derivatives of h (7). Setting p [h] = 
=p max[ 
functions 1 

, +&)I, we obtain a wider class of generalized functions IA which will inc P nde 

(0 (t - u) = d8 (t - 6)/d:, etc. 

6. Er an, p 1 l 8. Consider the controlled motion of a material point along the line 5, the 
motion being described by Eq. 

(0 > 0) (6.1) 

and it is necessary to bring this point in the time C~X- O,< ‘6 ‘B = R/W from the state 

4 (0) = Eo, 
to the equilibrium state 

(dS (t) / d&z,, = EI 

4 (n/o) = 0, (dS 0) / dt)t=x/o = 0. 

For the minimized intensity x [u], 
[Ih(~ (4h(‘Md71]. Th 

we choose the quantity defined by p,[h] = p maxr 
en, replacing (6.1) by the system 

and applying to this system Theorem 5.1, we find that for 6.1 > 1, the minimum of the quan- 

tity 

rPLo [s($)J-p,o [b’S[t, t,]s(tg)]-tL~‘la.u,[Ib’s(z)l, Idb’s(t)/dtI] 

is defined by the term maxT 
term max,lbS (7)18 (7)= J 

dbi (T)/dT[, 
[T, ta] J (t 

while for 0 < 1 this minimum is defined by the 
). Hence, in accordance with the maximum con- 

dition (5.11), we conclude that, for o,< d , the optimal control u” must be chosen in the form 
of an impulse a’( t ) I h8( t - 8) which instantly srops the point at that instant t = 6 when 
it passes through the equilibrium position [= 0. On the other hand, for o > 1, for the chosen 
value of the intensity x [a], the optimal control must be chosen in the form u’(t) = A8 (1) 
(t - 6), which is applied at that instant t = 6 at which the velocity d t( t )/df of the moving 

point is zero. The given effect may be considered as two oppositely direct extraordinarily 
strong impulses, with one immediately following the other. The first impulse imparts lo the 
point f an enormous velocity transferiug it to the position 50 0 while the secohd impulse 
immediately dampens this velocity at the point [- 0. We note here that in this example the 
optimal control IL’ has exactly the form of the generalized control which was investigated in 
Section 2 to 4. 

As a second exam la, we can examine the attenuation problem for s linear system wirh 
aftereffect [I8 and P 19 after a time T = 27. Here, for example, for n = 2 the control II (t ) for 
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0 < t 6 T will again be determined by the condition for retaining the trajectory x (L ) with 
the required subspaces and at the instant t = + 0 a control may be sou ht whose form is a 
linear combination a = yt 6( t ) + yZ 6 ‘(t). We note here that in a note I! 181 it was erroneous- 
ly stated that the problem there under consideration always has a solution when the vec- 
tors 6 and Ab satisfy the condition for a general state. Indeed, in some degenerate cases 
(when h, (8) s 0) this condition is not sufficient; for example, when 

:l-(;: ,$ b:= (;), g12----1 

Thus, we are reminded that the sufficient conditions must fulfill a requirement guaran- 
teeing the inequality hx( fl) $ 0. The authors were informed by Kurzhanskii that a similar 
inaccoracy exists in paper [ 191. 
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